47 research outputs found

    Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions

    Full text link
    It is often observed that the probabilistic predictions given by a machine learning model can disagree with averaged actual outcomes on specific subsets of data, which is also known as the issue of miscalibration. It is responsible for the unreliability of practical machine learning systems. For example, in online advertising, an ad can receive a click-through rate prediction of 0.1 over some population of users where its actual click rate is 0.15. In such cases, the probabilistic predictions have to be fixed before the system can be deployed. In this paper, we first introduce a new evaluation metric named field-level calibration error that measures the bias in predictions over the sensitive input field that the decision-maker concerns. We show that existing post-hoc calibration methods have limited improvements in the new field-level metric and other non-calibration metrics such as the AUC score. To this end, we propose Neural Calibration, a simple yet powerful post-hoc calibration method that learns to calibrate by making full use of the field-aware information over the validation set. We present extensive experiments on five large-scale datasets. The results showed that Neural Calibration significantly improves against uncalibrated predictions in common metrics such as the negative log-likelihood, Brier score and AUC, as well as the proposed field-level calibration error.Comment: WWW 202

    Vision Aided Environment Semantics Extraction and Its Application in mmWave Beam Selection

    Full text link
    In this letter, we propose a novel mmWave beam selection method based on the environment semantics that are extracted from camera images taken at the user side. Specifically, we first define the environment semantics as the spatial distribution of the scatterers that affect the wireless propagation channels and utilize the keypoint detection technique to extract them from the input images. Then, we design a deep neural network with environment semantics as the input that can output the optimal beam pairs at UE and BS. Compared with the existing beam selection approaches that directly use images as the input, the proposed semantic-based method can explicitly obtain the environmental features that account for the propagation of wireless signals, and thus reduce the burden of storage and computation. Simulation results show that the proposed method can precisely estimate the location of the scatterers and outperform the existing image or LIDAR based works

    Learn Continuously, Act Discretely: Hybrid Action-Space Reinforcement Learning For Optimal Execution

    Full text link
    Optimal execution is a sequential decision-making problem for cost-saving in algorithmic trading. Studies have found that reinforcement learning (RL) can help decide the order-splitting sizes. However, a problem remains unsolved: how to place limit orders at appropriate limit prices? The key challenge lies in the "continuous-discrete duality" of the action space. On the one hand, the continuous action space using percentage changes in prices is preferred for generalization. On the other hand, the trader eventually needs to choose limit prices discretely due to the existence of the tick size, which requires specialization for every single stock with different characteristics (e.g., the liquidity and the price range). So we need continuous control for generalization and discrete control for specialization. To this end, we propose a hybrid RL method to combine the advantages of both of them. We first use a continuous control agent to scope an action subset, then deploy a fine-grained agent to choose a specific limit price. Extensive experiments show that our method has higher sample efficiency and better training stability than existing RL algorithms and significantly outperforms previous learning-based methods for order execution

    Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning

    Full text link
    In the field of quantitative trading, it is common practice to transform raw historical stock data into indicative signals for the market trend. Such signals are called alpha factors. Alphas in formula forms are more interpretable and thus favored by practitioners concerned with risk. In practice, a set of formulaic alphas is often used together for better modeling precision, so we need to find synergistic formulaic alpha sets that work well together. However, most traditional alpha generators mine alphas one by one separately, overlooking the fact that the alphas would be combined later. In this paper, we propose a new alpha-mining framework that prioritizes mining a synergistic set of alphas, i.e., it directly uses the performance of the downstream combination model to optimize the alpha generator. Our framework also leverages the strong exploratory capabilities of reinforcement learning~(RL) to better explore the vast search space of formulaic alphas. The contribution to the combination models' performance is assigned to be the return used in the RL process, driving the alpha generator to find better alphas that improve upon the current set. Experimental evaluations on real-world stock market data demonstrate both the effectiveness and the efficiency of our framework for stock trend forecasting. The investment simulation results show that our framework is able to achieve higher returns compared to previous approaches.Comment: Accepted by KDD '23, ADS trac

    Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification

    Full text link
    Graph classification aims to extract accurate information from graph-structured data for classification and is becoming more and more important in graph learning community. Although Graph Neural Networks (GNNs) have been successfully applied to graph classification tasks, most of them overlook the scarcity of labeled graph data in many applications. For example, in bioinformatics, obtaining protein graph labels usually needs laborious experiments. Recently, few-shot learning has been explored to alleviate this problem with only given a few labeled graph samples of test classes. The shared sub-structures between training classes and test classes are essential in few-shot graph classification. Exiting methods assume that the test classes belong to the same set of super-classes clustered from training classes. However, according to our observations, the label spaces of training classes and test classes usually do not overlap in real-world scenario. As a result, the existing methods don't well capture the local structures of unseen test classes. To overcome the limitation, in this paper, we propose a direct method to capture the sub-structures with well initialized meta-learner within a few adaptation steps. More specifically, (1) we propose a novel framework consisting of a graph meta-learner, which uses GNNs based modules for fast adaptation on graph data, and a step controller for the robustness and generalization of meta-learner; (2) we provide quantitative analysis for the framework and give a graph-dependent upper bound of the generalization error based on our framework; (3) the extensive experiments on real-world datasets demonstrate that our framework gets state-of-the-art results on several few-shot graph classification tasks compared to baselines

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    corecore